If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7x^2+20+33x=0
a = 7; b = 33; c = +20;
Δ = b2-4ac
Δ = 332-4·7·20
Δ = 529
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{529}=23$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(33)-23}{2*7}=\frac{-56}{14} =-4 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(33)+23}{2*7}=\frac{-10}{14} =-5/7 $
| 7x+189+4x+91=93 | | 15+4p+3=4(-3p+4)+94 | | -2(n=7)=15 | | (m-4)=(m+3) | | 1/5(-2x+10)=1/5x+10 | | X9.9=0.2x | | 3x+9-4x=3(x+3)+2x | | -p+9=-6+8(p-6) | | -2(n=7=15 | | 2x-14=-52 | | 16+2(p–1)=32 | | 12=6+3z | | 5x-4=3x+198 | | 1/3(x+2)+3x=5x-16 | | 1/5(-2p+10)=1/5p+11 | | 3/2(x-2=19 | | 5(w+7)=-7w-37 | | -2x-34=-4 | | -2x-2=-26 | | 2j-4+10=12 | | 5x-12=3x+9 | | -8x+39=-5(x-3) | | n+5=-n+3 | | -9(v-3)=9v-9 | | -2a+9=0 | | -3-4x+4=0 | | .25x+0.05(x+2)+.1(3x)=360000 | | X-1-2-(3-x)=6-(1-1) | | 7x-415x-122x+9=180 | | 4(x-6)-4(x+3)=7-(x-7) | | c-2/5=c+7/6 | | 27x^-0.5=125x |